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Abstract  
This paper addresses a Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-CVRP) which combines 

a three-dimensional loading problem and vehicle routing problem in distribution logistics. The problem requires the 
combinatorial optimization of a feasible loading solution and a successive routing of vehicles to satisfy client demands, 
where all vehicles must start and terminate at a central depot. In spite of its clear practical significance in the real world of 
distribution management, 3L-CVRP in literature is very limited for its high combinatorial complexity.  

We solve this problem by a hybrid approach which combines Genetic Algorithm and Tabu Search (GATS). Genetic 
algorithm is developed for vehicle routing and tabu search for three-dimensional loading, while these two algorithms are 
integrated for the combinatorial problem. We computationally evaluate this hybrid genetic algorithm on all publicly 
available test instances, and obtain new best solutions for several instances.  
Key words: vehicle routing; three-dimensional loading; genetic algorithm; tabu search 

1. Introduction 
The Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-CVRP) is a very complex problem which 

combines two NP-hard problems called three-dimensional loading and vehicle routing. 3L-CVRP is initially introduced in a 
seminal paper [1] and it requires the determination of a set of goods whose total weight and volume cannot exceed vehicle 
weight capacity and loading space respectively, a feasible placement of goods in the loading space and several routes 
transported by a vehicle fleet for shipping goods to a number of clients for the minimization of the number of vehicles and 
total transportation cost.  

This combinatorial problem is of significant value from both practical and theoretical viewpoints. From the practical 
application, 3L-CVRP is especially relevant for the cases that suppliers have to deal with large goods and the operations of 
loading have to be considered seriously. i.e., when one is distributing soft drinks, kitchen components, auto parts, and 
household appliances, the loading problem must be taken into account. It has become increasingly popular in recent years in 



the field of distribution management. Concerning theoretical importance, 3L-CVRP is a very challenging problem for it 
includes two well known NP-hard optimal problems: three-dimensional Loading Problem (3LP) and Capacitated Vehicle 
Routing Problem (CVRP).  

The 3LP is particularly related to various container loading problems. It is constrained by the supporting surface, the 
fragility of goods, and the sequential loading or unloading which are considered in the literatures [2-6]. The 3LP calls for 
the determination of a given set of three-dimensional rectangular goods into the minimum number of three-dimensional 
containers (bins), while ensuring goods are completely contained within containers. Although the 3LP is solved by some 
effective meta-heuristics in the literature (such as[7-9] ), several instances in [10,11] with less than 50 goods are unable to 
achieve the optimization due to their specially difficult quality. 

The CVRP is one of the most widely researched problems in combinatorial optimization. It calls for determining the 
set of routes of minimal transportation cost, where a set of consignments are shipped by a vehicle fleet. For each vehicle, 
the total weight volume of loaded goods cannot exceed vehicle weight capacity while the specific loading is not considered. 
Its thorough review is in the classical volume [12]. Different effective solution methods are introduced for CVRP: i.e., an 
exact algorithm combining branch-and-cut and branch-and-price is presented in [13], some other meta-heuristics are 
proposed in [14-16].  

To the best of our knowledge, loading and routing problems have been studied widely but independently. Only few 
papers concern the combined optimization of vehicle routing and three dimensional loading problems. More precisely, these 
combinatorial problems are almost motivated for the practical cases. For example, a seminal paper [1] is exploded 
especially by a difficult loading problem with different shaped goods of high risk and the cost of being damaged during 
transportation; the paper [17] is studied for the delivery of timber chipboards, where Tabu Search (TS) and an Ant Colony 
Optimization (ACO) are presented to solve the problem; authors in [18] are capable of dealing with large-size instances, 
they introduce a meta-heuristics for 3L-CVRP to provide high quality solutions with reasonable computational effort.  

The 3L-CVRP generalizes another loading and routing problem known as the Two-dimensional Loading Capacitated 
Vehicle Routing Problem, denoted as 2L-CVRP. In 2L-CVRP, each vehicle has a two-dimensional rectangular space, goods 
with a two-dimensional rectangular space for being loaded to vehicles. The aim of 2L-CVRP is to optimize the distribution 
cost of the given goods which cannot be stacked one over the other. The 2L-CVRP proposed initially in [19,20] is solved by 
exact and meta-heuristic algorithms. Subsequently it is improved by several methods such as the branch-and-cut algorithm 
[21], tabu search heuristics [22], hybrid meta-heuristics [23], and ACO [24] respectively.  

In this paper we propose a hybrid approach based on the Genetic Algorithm and Tabu Search (GATS) for 3L-CVRP. It 
is motivated by the excellent results produced from both the classical routing problem [25] and the combinatorial problem 
[1]. Our aim is to generate high quality solutions with reasonable computational effort, therefore developing a hybrid 
genetic algorithm being able to solve large-size cases and being probably useful for real world delivery. We deal with this 
problem by carefully merging and tailoring techniques from the literature to the problem.  

The main contribution of this paper is twofold. Firstly, using the hybrid genetic algorithm, we produce very good 
results on all publicly available test instances improving the best previous approaches on average by 1.84%, and in some 
cases even by more than 9%. Secondly, we show that these solutions can be found very fast by GATS, the average of 
computational times being in less than 60 seconds. This is in contrast to the current results in the literature where 
computation time is slower. 

The remainder of this paper is outlined as follows: A more specific description of 3L-CVRP, its loading constraints and 
problem model, and an example are given in section 2. A hybrid genetic algorithm is presented in section 3. In section 4 
computational results are proposed and analyzed. Some conclusions are drawn in the final section. 

2. Problem description 



2.1 Problem statement 
Let , be a complete graph, where 0,1, … ,  is a set of 1 vertices corresponding to a depot (vertex 

0) and  clients (vertices1, … , ), and  a complete set of edges connecting each vertex pair ,  , 0,1, … , . Each 
edge has an associated routing cost . Given a fleet of   1, … ,   identical vehicles, each of which has a fixed 
cost  , a weight capacity  and a three-dimensional rectangular loading space  addressed by width , height , and 
length . Denote by · ·  the available rectangular loading space. Supposed each vehicle has an opening as large 
as the vehicle ( · ) on the rear for the loading and unloading operations. Each customer  1, … ,  requires a set 
of    three- dimensional items   1, … , , 1, … ,    having width , height , and length , whose total 
weight is . Let  ∑  denote the total amount of loading space needed by customer . The notation is 
based on [18].  

The 3L-CVRP calls for the determination of a set of at most   routes entirely starting and ending at the depot, a 
feasible three-dimensional loading and the minimization of the total cost, given that there exists a placement of goods in the 
volume that satisfies 3L-CVRP constraints deriving from the nature of goods, the stability of goods, and other practical 
transportation regulations, which are presented as follows:  

 Visiting rule: All items of each client only can be distributed once and no split deliveries. 
 Containing request: All goods are completely contained in vehicles, no parts of goods outside of vehicles. 
 Fragile requirement: Goods are divided into two types: fragile and non-fragile. If is fragile, a fragility flag   is equal 

to 1, and 0 otherwise 1, … , , 1, … ,   . Fragile and non-fragile goods can be stacked on top of each other 
respectively, however non-fragile items cannot be placed on top of fragile ones.  

 Loading constraint: The loading must be orthogonal. Goods usually have a fixed top with respect to the height in 
transportation. Goods can only be rotated by 900 on the horizontal plane.  

 Sequential loading policy: Last-In-First-Out policy introduced in [21] is a common request in the loading and delivering 
environments. It is denoted in the following as a sequential loading constraint. When visiting a client, all his goods must 
be unloaded without moving goods of clients visited later through a sequence of straight shifts parallel to the L-edge 
along the route. That is to say, no goods required by the successive clients can be placed between  and the rear of 
vehicle or on top of  .  

 Supporting area constraint: When item  is placed on top of other goods, its base should be supported by a minimum 
supporting area. In other words, the goods placed under , must form a cumulative area , where 0
1 is a given parameter which represents a minimum fraction of area of   to be supported. Obviously, if an item is 
placed on the base of the vehicle directly, the supporting area constraint will be always satisfied.  

2.2 Problem model 
The goal of 3L-CVRP is twofold. First, it minimizes the number of usage of vehicles and the total transportation cost of 

routes. Secondly, it addresses a feasible loading stack in the first place. Hence, the 3L-CVRP model can be divided into two 
groups, one for VRP and the other for 3LP. The objective function and constraints of VRP model are mathematically 
formulated as shown in (1) and (2-9) respectively:  
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Decision variables: 
:  equals to 1 if vehicle  is used, 0 otherwise. 
:  equals to 1 if route ( ,  is served by vehicle , 0 otherwise. 
:  equals to 1 if goods of client   are distributed by vehicle , 0 otherwise. 
  In the objective function (1), the minimization of the number of vehicles and the total travel cost are sought. 

Constraint (2) ensures that all clients are just visited once. Constraint (3) makes sure that the active vehicle departs from the 
depot. Constraint (4) guarantees the same for the arrival to the depot. Constraint (5) is a flow conservation that a vehicle 
arrives to a node then it must leave from that node to another one. Constraints (6) and (7) ensure that the weight and volume 
capacity of vehicles can’t be exceeded. Constraint (8) binds the three-dimensional loading variable to the vehicle routing 
problem variables. Constraint (9) is sub-tour elimination constraint.  

Before formulating the 3LP model of each vehicle, a Cartesian coordinate system is employed with its origin in the 

container’s front-left-bottom. We suppose (x, y, z) be the possible coordinates where the front-left-bottom corner of an item 

can be placed. These possible positions along axis L, W and H of the container belong to the sets: 0,1,2, … ,

, 0,1,2, … , , 0,1,2, … , . To the best of our knowledge, even if the total 

volume of items to be loaded into the same vehicle is less than its vehicle volume, it still exists that some of items cannot be 

placed into the vehicle due to the different shape of items. The aim of 3LP is to maximize the number of items to be loaded 

into the vehicle: 
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Where: 
：the number of items in vehicle . 
′, ′, ′ : a possible coordinates of front-left-bottom corner of another item. 
: the maximum admissible pressure that an item can bear at any point ′, ′  of its top face.  

In the objective function (10), the maximization of the number of items to be loaded in each vehicle are sought. 
Constraint (11) ensures that all items are supported by a supporting area and no boxes can have overlap. Constraint (12) 
explains the maximum admissible pressure of non-fragile and fragile items. 0 defines that item  as being fragile and 
non-fragile goods cannot be placed on top of it. Constraint (13) is a decision variable. Constraints (14-15) are the 
calculations for the values of length and width of item . The notation is based on [26]. 
2.3 Problem example 

For the sake of good understanding of 3L-CVRP and its constraints, see, for example, figure 1, where nine clients 
demand for a total of 17 weighted goods, to be delivered through vehicles based at a central depot. Fragile goods are 
depicted in grey color. The total volume of goods loaded in the vehicle does not exceed the vehicle weight D=20. A possible 
solution formed by three routes is proposed. 
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Figure 1 A simple 3L-CVRP example 

In figure 2, feasible three-dimensional loadings corresponding to the routes of figure 1 are shown: No split delivery 
happens; all goods are completely contained in vehicles; no non-fragile item is placed on top of fragile goods; the loading is 
orthogonal; each item base is supported, partially or completely, by the surface of vehicles or other goods (see the loading 
of goods  and   of route 1,   and   of route 3 in figure 2); all items can be unloaded without moving items of 



the clients visited later. For instance, recalling the loading of route 2, all goods of client 4 can be unloaded without shifting 
goods from client 5 or 6, after distributing the goods of client 4, the goods of client 5 can be unloaded without moving any 
goods of client 6. 
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Figure 2 Feasible three-dimensional loadings for the routes of figure 1 

In the version of 3L-CVRP, when removing some of the constraints described above, some different loading and routing 
problems representing different practical problems in transportation will be obtained. It is also of interest to estimate the 
solution difference between one loading structure and another for understanding the cost implications of different 
constraints. We will analyze and estimate these different influences in the section 4. 

3. A Hybrid Genetic Algorithm 
To our best knowledge, both the capacity vehicle routing problem and the three-dimensional problem are NP-hard 

problems, and the combinatorial problem 3L-CVRP is clearly also the case. Therefore, we prefer to employ heuristic and 
meta-heuristic methods instead of an exact algorithm to solve this combinatorial problem within reasonable time. A number 
of initial feasible solutions for 3L-CVRP are initially generated by Sweep Approach (SA)[27], which are optimized by a 
genetic algorithm (GA). We then solve the loading sub-problem using TS method. In section 3.1 GA is set up to construct 
the solutions of VRP. In section 3.2 TS is proposed to find a feasible solution of 3LP. In section 3.3 a hybrid genetic 
algorithm is presented to solve 3L-CVRP, its procedure is introduced in detailed. 
3.1 GA for vehicle routing 

At the start of the process of GA for VRP, we produce an initial population of structured solutions using SA proposed 

by[27-29]. Four stages are executed in SA. First, the consignments around the depot are numbered and sorted clockwise. 

Secondly, the vehicles are numbered and each of them is required to serve the consecutive customers from a 

randomly-selected customer base until a constraint violation occurs. Third, a given number of initial solutions are 

constructed to build a population, each of which is calculated through the routing distances and related to a fitness value of 

GA. Fourth, for the sake of crossover of GA, the route of each solution of VRP is described as a line which is marked with 

the decimal number of vehicle. For example, the solution of figure 1 is depicted as follows: 

Table 1 the solution depiction of figure 1 
Customer 1 2 3 4 5 6 7 8 9 

Solution 1 1 1 2 2 2 3 3 3 

In table1, customer 1,2,3 are marked with vehicle 1, customer 4,5,6 with vehicle 2, customer 7,8,9 with vehicle 3. The 

chromosome of solution is depicted as line 1-1-1-2-2-2-3-3-3 according to the sequence number of customers.  



The structured solutions of initial population will be optimized by a reproductive process and a replacement scheme of 
GA. In the reproductive process, two parent solutions in the population are chosen by roulette method [25], which is 
employed to generate offspring with a standard 2-point crossover procedure. It has been proved that best results can be 
obtained using the standard 2-point crossover. These 2-points in the chromosome are selected randomly, see table 2. 
Crossover points are generated randomly between customers 4 and 5, and between customers 8 and 9. Columns depicted as 
lines are inserted in the corresponding locations in table 2 and are divided into two sectors. An application of 2-point 
crossover yields the following offspring, each having the vehicle allocations from parent 1 with one sector and from parent 
2 within the other sector in table 3. 

Table 2 the application of 2-point crossover of the parents 
Customer 1 2 3 4 5 6 7 8 9 

Parent 1 1 1 3 2 1 2 3 2 3 

Parent 2 1 3 2 1 3 1 2 2 3 

Table3 the result of 2-point crossover for the offspring 
Customer 1 2 3 4 5 6 7 8 9

Offspring 1 1 1 3 2 3 1 2 2 3

Offspring 2 1 3 2 1 1 2 3 2 3

Customer 1,2,5 are served by a same vehicle in Table2, while customer 5 is replaced by customer 6 in Table3. The 
former route for customer 1,2,5 is broken, and a new route must be set up for customer 1,2,6. In this paper, we make use of 
TS (readers can refer[1] for a detailed description) to find routes of solution of each offspring. If offspring duplicate existing 
members of the population, it will be removed. If offspring have worse fitness than their parents, it will be deleted. If 
offspring violate volume and/or capacity constraints, it will be removed. If offspring have better gene values than their 
parents, they will be selected to stay in the population. In each step of iterative process of this algorithm, a simple mutation 
of chromosomes is applied in the population for the improvement of solutions.  

In the replacement scheme, we give a size of population and keep it constant. When an eligible offspring enters the 
population of GA, the fitness of the whole members in the population will be calculated and ranked again. The member 
with the worst fitness will be replaced by an eligible offspring. With this replacement method feasible solutions will evolve 
and save computational time of algorithm. The procedure will continue until the terminal criterion is satisfied. Figure.3 
shows a process of GA for VRP.  
3.2 TS for three-dimensional loading 

In the TS algorithm, items  to be loaded in the same vehicle  are sequenced in reversed order of visit considering 
loading constraints. Non-fragile items precede fragile items to ensure the former’s top surface can be employed for carrying 
subsequent items of any fragility status. For example, figure 1, where the loading sequence 
is  ,  ,  ,  ,  ,  ,  for vehicle 1,  ,  ,  ,  ,   for vehicle 2, and  ,  ,  ,  ,   for 
vehicle 3. Given such a sequence, front-left-bottom and touching-area heuristics are executed respectively to find a feasible 
loading solution that minimizes the used space or maximizes the number of items to be loaded into vehicles. In this 
subsection, our aim is to use a loading space of maximum width , maximum height  , and minimum length .  

Front-Left-Bottom heuristics for three-dimensional loading problem ( )[30] focuses on those positions where the 
bottom surface of item to be loaded (resp. left, resp. front) touches either the bottom of the vehicle container or the top of an 
already loaded item.  scans the normal positions according to our aim and considers two feasible orientations on the 

 plane. chooses the first feasible loading as soon as it satisfies all packing constraints. Touching-Area 
heuristics for three-dimensional loading problem ( ) [31] concerns the positions in which an item to be loaded 
maximizes the percentage of the item surface touching the vehicle container and other items already packed.  selects 



the position with the highest percentage. Each procedure of these two heuristics is iterated until all items are placed into 
vehicles or one of other stopping criteria is reached and the best loading solution is obtained. The stopping criteria say that a 
prefixed maximum number of generations is reached and the algorithmic convergence has been achieved. 
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Figure 3 a process of GA for VRP. 



 

Figure 4 A procedure of TS for 3LP 
If the minimum length  is less than  for each vehicle, namely , a feasible loading is found and the 

algorithm terminates. If one vehicle cannot contain its items, namely , TS chooses a better loading solution obtained 
by the two loading heuristics and attempts to update this incumbent solution. For the vehicles where items cannot be fully 
loaded, items are divided into two types. Items  loaded entirely within the vehicle are defined as type T , . Items  
having a portion outside the vehicle are as type T , . TS uses two tabu lists for these two types of items, The value 
of the tabu list length is experimentally determined as the minimum between 10 and half the number of goods to be loaded. 



TS will substitute a different pair ,  to execute all possible shifts for investigating the neighborhood thoroughly only if 
it improves the incumbent solution. The improvement is evaluated by a score , , where , ,

. ,  is the solution value of VRP after  and  are exchanged.  and  is respectively the 
rate of the number of times items  and  having been selected for exchanging in the previous movement of the number of 
exchanges executed.  is the length of vehicle container. We calculate the score ,  of each pair ,  and choose the 
best score for the improvement of loading problem. TS does not permit the exchange ,  until it has executed a prefixed 
number of iterations. TS will terminate as soon as a feasible loading is found or when the algorithm has finished a prefixed 
number of iterations. A procedure of TS is shown in figure.4.  
3.3 A Hybrid Approach for 3L-CVRP 
In this subsection, we integrate GA and TS to be a hybrid approach for 3L-CVRP. First we apply SA to generate some 
initial solutions for VRP. Subsequently we employ GA to optimize the solutions of VRP and rank the solutions of a given 
number in the population. Third we make use of  and  (FT) to address 3LP. If a feasible loading of the 3LP is 
found by the two loading heuristics, the process of the hybrid algorithm will terminate. Otherwise, 3LP is optimized by TS. 
In the TS algorithm, items are divided into two types and exchanged with each other to improve the rate of space usage of 
vehicles. If a feasible loading solution is generated by TS, the hybrid algorithm terminates. Otherwise, the procedure is 
repeated for the successive top solution of VRP until a feasible solution is found. A pseudocode of the hybrid approach for 
3L-CVRP is described in Table4, while in the next two paragraphs some procedures of the hybrid approach are explained. 

In Table 4, four different types of algorithms are integrated for 3L-CVRP, namely SA, GA, FT and TS. Two main 
processes are produced to solve vehicle routing sub-problem and three-dimensional loading sub-problem respectively. 
These four algorithms will be integrated since no feasible solution of 3L-CVRP is found in a whole procedure.  

Some steps probably confusing readers during the process are explained as follows. The first point is step 13, we list 
the whole solutions of VRP for the choice of finding a feasible loading solution in sequence. The second one is step 19, the 
number of iterations is given, if TS can not find a feasible loading solution on a top solution of VRP, the algorithm will halt 
and test the successive top solution. At last, the process will stop when either the number of generations reaches 10000 or 
the number of continuous iteration of non-improvement reaches 100. 

4. computational results 
The Hybrid Approach is coded in C# and compiled with windows XP compiler. The algorithm is tested by 

computational experiments on a Pentium IV with 2.3 GHz and 1 GB of RAM, running under a windows operative system. 
It is tested on the set of instances proposed in [1], which can be downloaded from http://www.or.deis.unibo.it /research.html. 
These instances are the only 3L-CVRP instances available on the web. They provide an interesting test bed since heuristic 
solutions are available for comparison. In the instances, the graphs, the weight demanded by clients and the vehicle weight 
capacities are taken from 27 Euclidean CVRP instances (see [12] for a detailed description of CVRP test bed instances). 
The arc costs are determined as the Euclidean distances between client coordinates. The loading volume has 
dimensions 25, 30, and 60. For each client the number of requested goods is randomly generated according 
to a uniform distribution between 1 and 3. Each item dimension is randomly generated according to a uniform distribution 
in the interval between 20% and 60% of the corresponding vehicle dimension. The minimum supporting area is set equal to 
0.75. For presenting the advantage of this hybrid approach, we compare its solutions with TS[1], GTS[23], and ACO[18]. 
The parameters setting for the GATS are given in Table 5, which have been heavily tested in [1,22,32,33]. 

 
 
 



Table4 A pseudocode of the hybrid approach for 3L-CVRP 
SA-GA for CVRP, FT-TS for 3LP   
01. Using SA to generate an initial population of structured solutions 
02. Evaluate fitness value for each individual in the population 
03.     Select two parents in the population with roulette method 
04.     Produce two offspring by crossovering the parents 
05.     Mutate offspring 
06.     Evaluate fitness of offspring 
07.     Rank the member of the population 
08.     Remove the worst solution from the population 
09.     Keep the size of population constant 
10.     If the stopping criteria of GA are satisfied 
11.        Go to step 13 
12.     Else  
13.        Go to step 03 
14.     Endif 
15. List the top solutions of GA (LTS) 
16. Do i=1:LTS 
17.     Load the items with FLB3L and TA3L respectively. 
18.       If a feasible loading solution is obtained  
19.         Go to step 44 
20.       Else 
21.         Go to step 23 
22.       Endif 
23.   Do  :         % :     
24.     Employ two tabu lists for two types of items 
25.     Calculate the improvement of ,  for each pair 
26.     Choose the best improvement and exchange the items pair ,  
27.       If a feasible loading solution is obtained 
28.          Go to step 44 
29.       Else  
30.          go to step 23 
31.       Endif 
32.   Enddo  
33.   If a feasible loading solution is obtained 
34.       Go to step 44 
35.   Else  
36.       Go to step 16 
37.   Endif 
38. Enddo 
39. If no feasible solution for 3L-CVRP is found 
40.   Go to step 1 and repeat the procedure until the solution of 3L-CVRP is found 
41. Else 
42.   Go to step 44 
43. Endif 
44. Return the best solution found for 3L-CVRP 

In Table 6, the first three columns report the index I of instances, the number of clients , the total number of goods M 
(M ∑ m . The next three columns report the solutions obtained by TS[1], GTS[23], and ACO [18] respectively. For 
the GATS we report the total travel costs and computational times of the instances. Since the solutions found by TS in [1] is 
the first and standard results based on all publicly available test instances, we mainly compare GATS with the other three 
algorithms and give their gaps, evaluated as  %g ATS TS 100 u x /x ,  %g ATS TS 100 u y /y , 
%g ATS ACO 100 u z /z . For each column the row AVG presents the average values on the 27 instances. Each 



vehicle satisfies the standard 3L-CVRP requirements of the loading constraints: fragile constraint, sequential loading, a 
minimum supporting of 75% of each goods base and rotation allowed only on the base. 
Table 5 the parameters of GA and TS 

GA  TS 
Parameter Description Value Parameter Description Value 

α 
β 
γ 
θ 

Iterations 
Popular Size 
Crossover 
Mutation 

1000 
100 
0.75 
0.05 

λ 
μ 
τ 
π 

Neighbor size 
Tabu list tenure 
Tentative value 
Average edge cost 

Min{n/4,20} 
Min{n/10,15} 

1,c,2c 
c 

Table 6 Comparisons of the GATS algorithm with TS, GTS, and ACO on 3L-CVRP instances from the literature. All 
loading constraints imposed. 

I n M 
TS  GTS ACO GATS GAP 
x  y zavg u secu %gGATS-TS %gGATS-GTS %gGATS-ACO

E016-03m 15 32 316.32 321.47 305.35 301.17 2.63 -4.79  -6.31  -1.37  
E016-05m 15 26 350.58 334.96 334.96 306.66 7.00 -12.53  -8.45  -8.45  
E021-04m 20 37 447.73 430.95 409.79 345.72 12.78 -22.78  -19.78  -15.64 
E021-06m 20 36 448.48 458.04 440.68 432.60 10.36 -3.54  -5.55  -1.83  
E022-04g 21 45 464.24 465.79 453.19 426.92 12.42 -8.04  -8.34  -5.80  
E022-06m 21 40 504.46 507.96 501.47 476.04 7.61 -5.63  -6.28  -5.07  
E023-03s 22 46 831.66 796.61 797.47 812.43 18.48 -2.31  1.99  1.88  
E023-05s 22 43 871.77 880.93 820.67 810.85 12.38 -6.99  -7.96  -1.20  
E026-08m 25 50 666.1 642.22 635.5 622.43 11.88 -6.56  -3.08  -2.06  
E030-03g 29 62 911.16 884.74 841.12 787.34 21.44 -13.59  -11.01  -6.39  
E030-04g 29 58 819.36 873.43 821.04 747.09 19.41 -8.82  -14.46  -9.01  
E031-09h 30 63 651.58 624.24 629.07 634.96 15.22 -2.55  1.72  0.94  
E033-03n 32 61 2928.34 2799.74 2739.8 2734.12 28.81 -6.63  -2.34  -0.21  
E033-04s 32 72 1559.64 1504.44 1472.26 1287.30 19.11 -17.46  -14.43  -12.56 
E033-05s 32 68 1452.34 1415.42 1405.48 1265.33 22.42 -12.88  -10.60  -9.97  
E036-11h 35 63 707.85 698.61 698.92 705.27 19.84 -0.36  0.95  0.91  
E041-14h 40 79 920.87 872.79 870.33 874.02 22.70 -5.09  0.14  0.42  
E045-04f 44 94 1400.52 1296.59 1261.07 1225.10 24.39 -12.53  -5.51  -2.85  
E051-05e 50 99 871.29 818.68 781.29 776.22 39.72 -10.91  -5.19  -0.65  
E072-04f 71 147 732.12 641.57 611.26 575.33 66.95 -21.42  -10.33  -5.88  
E076-07s 75 155 1275.2 1159.72 1124.55 1129.16 54.23 -11.45  -2.64  0.41  
E076-08s 75 146 1277.94 1245.35 1197.43 1204.18 34.09 -5.77  -3.31  0.56  
E076-10s 75 150 1258.16 1231.92 1171.77 1200.87 40.73 -4.55  -2.52  2.48  
E076-14s 75 143 1307.09 1201.96 1148.7 1253.69 86.30 -4.09  4.30  9.14  
E101-08e 100 193 1570.72 1457.46 1436.22 1493.05 689.63 -4.94  2.44  3.96  
E101-10c 100 199 1847.95 1711.93 1616.99 1617.04 91.20 -12.50  -5.54  0.00  
E101-14s 100 198 1747.52 1646.44 1573.5 1575.88 55.81 -9.82  -4.29  0.15  

    AVG 1042.26   997.18  966.66 948.92 53.61 -8.96  -4.84  -1.84  

In table 6, in terms of solution quality the GATS meta-heuristics is clearly superior to the TS. In all the cases, the 



average of the solutions found by GATS is 8.96% better than the one found by the TS. Secondly, we find that the 
performance of GATS is 4.84% better than the performance of GTS, for the whole instances except for E023-03s, E031-09h, 
E036-11h, E041-14h, E076-14s, E101-08e, and E101-14s. We thirdly note that the GATS results in a 1.84% solution 
improvement compared with the ACO algorithm, 16 instances within the 27 can produce better solutions. Finally, we focus 
on the computational times executed by GATS. We yield a very largely averaged reduction of computational times of GATS 
compared with the other three algorithms, reaching 97.40%, 97.78%, and 96.93% respectively. 

In table 7, we execute the GATS approach to evaluate the effect of each loading constraint imposed by the problem on 
the total costs. In particular, we run our algorithm with four different loading constraint configurations, including the 
fragility, LIFO, and supporting area constraints. For the sake of simple comparison, we only give the average value of 
solutions generated by the algorithms. The first row shows the solutions of all constraints of TS, ACO, GATS and their gaps, 
the second row to the fourth one does not consider the fragility, LIFO, and support area respectively. For the last figuration 
all three aforementioned constraints are ignored. 

Table 7 Summarized comparison between the GATS and the TS and ACO on different loading configurations. 

I 
TS  ACO GATS GAP  GAP-value 

x secx  zavg secz u secu %gGATS  %gGATS-TS %gGATS-GTS

All constraints 1042.26  2058.90  966.66 1746.6 948.92 53.61 0 -8.96  -1.84 
No fragility 1014.49  2410.80  945.14 1337 935.54 50.23 -1.41  -7.78  -1.02 
No LIFO 951.19  1709.80  916.25 676.6 908.67 51.41 -4.24  -4.47  -0.83 

No support  939.53  1882.50  919.69 1340 910.22 53.24 -4.08  -3.12  -1.03 
3D  only 876.31  1567.40   856.67 689.3 842.64 48.77 -11.20   -3.84  -1.64 

We firstly focus on the percentage difference %g ATS, the gaps between all constraints and the other four constraints. If 
we remove the LIFO constraint and supporting area constraint, the algorithm will lead to the larger reduction of 4.24% and 
4.08%. While removing the fragility constraint can just find a weak reduction of 1.41% in the solution value. When we 
remove all three constraints, the hybrid approach will obtain an overall average solution value reduction of 11.20% which is 
by far better improvement than three others. Secondly, we concern the differences %g ATS TS and %g ATS TS between 
the average solutions found by TS, ACO and GATS under different loading configurations, where%g ATS TS 100 u
x /x  and %g ATS ACO 100 u z /z . We find that when considering the whole constraints, the gaps among 
these three algorithms are the largest at 8.96% and 1.84%. While relaxing some constraints, the gap will be reduced. We 
note that the smallest gap between GATS and TS is 3.12% when the supporting area constraint is ignored, and the smallest 
gap between GATS and ACO is 0.83% when we relax the LIFO constraint. 

We finally test the characteristics of the hybrid genetic algorithm on all publicly available instances. In terms of the 
memory usage, the GATS algorithm requires then memory than the TS, GTS and ACO heuristics. As the preciously noted, 
our algorithm can execute averagely less than 60 seconds to obtain good results. However, each of the other three 
algorithms should run more than 1700 seconds to completion. In terms of robustness of the parameter configurations of the 
algorithms, we note that all the algorithms are very robust. In terms of algorithm sensitivity for solving the loading 
sub-problem, the GATS is more sensitive than the other three algorithms. 

5. Conclusions 
In this paper, the problem combines three-dimensional problem and capacitated vehicle routing problem which both are 

NP-hard problems. Although the practical relevance is evident, we only can find very few papers devoted to the 
combination of loading and routing due to its sophisticated characteristics. There is no exact algorithm presented for this 
combinatorial problem, so it is difficult to achieve the optimality for the reasonably sized problems. A very good 



performance of GATS approach is presented with publicly available test instances comparing to recent TS, GTS, and ACO 
meta-heuristics. We are able to improve the total routing cost on average by 1.84% comparing with the best current 
solutions. To the best of our knowledge, in the real world, the 3L-CVRP usually is related to time window, pickup and 
delivery, heterogeneous fleet and etc., it will lead to an extensive research field because of the better application in the 
distribution logistics.  
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Appendix  
(The routes of 27 instances: RI) 
RI 1：0-7-8-1-11-5-0||0-12-4-13-14-0||0-3-2-9-10-15-0||0-6-0|| 
RI 2: 0-12-4-15-10-0||0-2-3-1-0||0-8-7-0||0-11-9-5-0||0-14-6-0|| 
RI 3: 0-12-18-16-13-14-17-0||0-1-6-19-11-20-5-7-0||0-2-9-8-0||0-3-15-4-0|| 
RI 4: 0-8-7-5-0||0-14-13-4-9-0||0-10-19-11-6-0||0-12-18-16-17-0||0-15-3-0||0-2-1-0|| 
RI 5: 0-1-2-5-7-9-10-0||0-15-12-14-16-17-0||0-18-20-21-19-0||0-11-8-6-3-4-13-0|| 
RI 6: 0-9-7-5-6-8-0||0-12-15-18-14-0||0-3-4-11-0||0-17-20-21-0||0-13-16-0||0-1-2-10-0|| 
RI 7: 0-6-1-2-3-16-15-14-21-0||0-10-13-18-0||0-4-5-8-7-9-0||0-19-20-22-17-0||0-11-12-0|| 
RI 8: 0-6-1-2-3-16-15-14-17-0||0-5-4-8-7-0||0-9-13-11-12-18-0||0-19-20-22-21-0||0-10-0|| 
RI 9: 0-6-14-1-23-2-0||0-16-13-7-17-0||0-9-8-11-21-0||0-5-20-0||0-18-24-22-0||0-10-12-0||0-19-15-0||0-3-0|| 
RI 10: 0-25-29-24-1-4-3-0||0-26-28-27-6-5-0||0-8-14-9-17-12-0||0-16-13-15-10-11-7-0||0-19-20-22-2-18-0||0-21-23-0|| 
RI 11: 0-15-16-13-7-17-0||0-8-14-9-12-11-21-0||0-1-24-25-29-6-4-3-0||0-22-20-19-18-23-0||0-26-28-27-5-2-10-0|| 
RI 12: 0-14-19-8-0||0-10-11-0||0-22-28-2-0||0-29-5-15-20-0||0-4-30-13-0||0-6-17-12-3-0||0-9-25-18-23-0|| 



0-26-7-27-0||0-16-1-21-0|| 
RI 13: 0-3-20-25-19-23-21-8-9-10-0||0-5-11-12-7-6-0||0-13-32-17-1-4-31-0||0-18-26-27-28-2-30-29-0|| 

0-15-24-14-22-16-0|| 
RI 14: 0-18-19-21-20-22-24-0||0-4-3-2-12-5-31-0||0-28-27-26-25-17-0||0-30-14-15-1-13-11-0||0-10-8-9-7-0|| 

0-6-32-23-16-29-0|| 
RI 15: 0-29-28-27-26-25-0||0-21-20-22-19-18-17-14-1-0||0-8-9-10-32-6-7-12-3-0||0-23-24-15-13-0|| 

0-4-5-11-2-0||0-16-30-31-0|| 
RI 16: 0-29-5-15-20-0||0-33-1-22-23-0||0-10-31-25-0||0-7-35-8-34-0||0-13-27-4-0||0-26-12-17-3-0|| 

0-18-24-16-0||0-11-19-0||0-21-28-0||0-30-2-0||0-9-32-0|| 

RI 17: 0-16-33-23-0||0-8-35-7-26-0||0-28-21-0||0-27-13-15-5-0||0-6-2-29-0||0-3-32-39-0||0-38-10-0|| 
0-31-9-0||0-4-34-0||0-22-1-30-0||0-12-40-0||0-18-25-24-0||0-20-37-36-0||0-14-19-0|| 

RI 18: 0-5-6-7-35-3-4-34-32-0||0-28-33-31-41-44-0||0-21-20-24-9-15-1-0||0-12-14-13-16-25-0||0-30-39-40-42 
-36-38-37-2-0||0-23-22-26-19-8-0||0-11-18-17-10-0||0-27-29-43-0|| 

RI 19: 0-17-37-15-44-42-41-13-0||0-12-47-4-18-14-25-46-0||0-40-19-45-33-10-39-38-0||0-5-49-9-50-16-2-29-0|| 
0-36-35-20-3-28-31-48-0||0-8-26-7-23-24-43-0||0-30-34-21-11-22-0||0-1-32-27-6-0|| 

RI 20: 0-52-45-53-46-49-0||0-9-7-4-8-3-5-71-0||0-13-12-16-17-2-15-19-11-59-0||0-58-61-60-62-63-64-66-54-0|| 
0-65-67-68-39-57-25-0||0-44-42-43-48-47-50-70-0||0-28-22-21-30-29-20-0||0-10-6-18-1-33-0||0-32-31-34

-36-41-0||0-14-35-55-0||0-24-26-23-27-0||0-38-37-69-40-51-0||0-56-0|| 

RI 21: 0-55-25-50-18-24-49-16-3-0||0-56-23-63-33-73-62-28-22-1-0||0-70-60-71-36-47-21-74-30-4-0||0-72-39-9- 
32-44-40-12-0||0-51-6-68-75-67-34-52-57-0||0-64-42-41-43-2-48-0||0-20-37-5-29-45-13-0||0-38-65-11-6 

6-59-14-0||0-46-8-35-7-0||0-31-10-58-26-0||0-53-19-54-15-0||0-61-69-27-17-0|| 

RI 22: 0-13-27-52-34-46-8-35-14-54-0||0-17-51-6-68-75-4-67-0||0-43-41-42-64-22-0||0-71-60-70-37-47-21-29-0 
||0-61-28-62-73-33-63-16-0||0-44-3-32-9-39-40-0||0-19-53-11-65-38-10-0||0-69-36-5-48-74-2-0||0-25-50-

18-24-49-23-0||0-57-15-20-7-0||0-1-56-30-45-0||0-12-26-58-72-0||0-59-66-31-55-0|| 

RI 23: 0-39-9-32-44-3-16-63-0||0-12-40-17-51-6-75-0||0-49-24-18-50-25-55-72-65-0||0-15-57-13-27-29-5-36-0 
||0-43-41-42-64-22-62-73-2-0||0-70-60-71-69-21-47-48-54-0||0-67-34-46-8-35-7-58-0||0-23-56-1-33-68- 

30-0||0-10-38-11-66-19-0||0-53-14-59-52-45-0||0-61-28-74-4-0||0-20-37-26-0||0-31-0|| 

RI 24: 0-53-14-19-8-13-0||0-71-60-70-20-37-5-69-0||0-25-50-18-24-49-1-0||0-43-41-42-64-22-73-23-0||0-10-58- 
72-39-9-0||0-36-47-21-74-28-0||0-32-44-3-16-63-51-0||0-26-67-34-46-0||0-4-75-68-6-17-0||0-2-30-48-29-

27-0||0-52-45-15-57-54-12-0||0-7-35-11-65-38-0||0-59-66-31-55-0||0-33-62-61-56-0||0-40-0|| 

RI 25: 0-42-87-97-95-94-6-96-0||0-77-3-79-33-81-9-51-20-70-31-0||0-98-37-92-59-99-93-85-61-5-89-0||0-55-25 
-39-56-75-74-22-0||0-36-47-48-82-7-8-11-0||0-44-14-100-91-16-0||0-67-23-41-73-21-72-4-54-0||0-18-60-8

3-84-17-86-0||0-63-90-32-10-62-0||0-38-43-15-57-2-58-40-0||0-28-27-69-1-50-0||0-80-68-12-26-53-13-0||

0-29-24-76-78-34-35-71-19-0||0-45-46-49-64-0||0-30-66-65-52-0||0-88-0|| 

RI 26: 0-73-70-71-76-78-81-63-0||0-44-45-46-48-51-52-43-0||0-24-25-27-26-23-6-12-0||0-32-33-34-36-39-38- 
37-0||0-97-93-92-94-95-96-99-98-4-0||0-89-88-85-84-83-68-0||0-86-87-90-91-75-1-5-0||0-82-79-77-80-72-

66-0||0-7-3-8-9-15-0||0-40-41-42-49-0||0-22-21-20-28-0||0-18-17-13-19-16-14-29-0||0-56-58-60-54-0||0-

50-47-69-62-55-0||0-67-65-74-61-64-0||0-59-57-53-31-35-0||0-11-10-2-30-0||0-100-0|| 

RI 27: 0-35-71-9-81-33-79-51-0||0-92-59-99-96-94-6-89-18-24-0||0-93-85-91-100-37-98-0||0-82-48-47-36-46- 
8-45-0||0-15-43-42-87-97-95-27-0||0-14-44-16-61-5-84-7-0||0-21-73-72-74-22-75-56-25-0||0-65-66-20-30

-70-31-0||0-57-2-58-40-0||0-60-83-17-86-38-53-0||0-3-77-76-50-1-28-0||0-80-68-26-0||0-13-52-88-62-10

-63-0||0-41-23-39-4-34-0||0-11-19-49-64-90-32-0||0-54-55-12-0||0-69-78-29-67-0|| 


